The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells.

نویسندگان

  • Cristofol Vives-Bauza
  • Monika Anand
  • Ashton K Shiraz
  • Jordi Magrane
  • Junping Gao
  • Heidi R Vollmer-Snarr
  • Giovanni Manfredi
  • Silvia C Finnemann
چکیده

Accumulation of indigestible lipofuscin and decreased mitochondrial energy production are characteristic age-related changes of post-mitotic retinal pigment epithelial (RPE) cells in the human eye. To test whether these two forms of age-related impairment have interdependent effects, we quantified the ATP-dependent phagocytic function of RPE cells loaded or not with the lipofuscin component A2E and inhibiting or not mitochondrial ATP synthesis either pharmacologically or genetically. We found that physiological levels of lysosomal A2E reduced mitochondrial membrane potential and inhibited oxidative phosphorylation (OXPHOS) of RPE cells. Furthermore, in media with physiological concentrations of glucose or pyruvate, A2E significantly inhibited phagocytosis. Antioxidants reversed these effects of A2E, suggesting that A2E damage is mediated by oxidative processes. Because mitochondrial mutations accumulate with aging, we generated novel genetic cellular models of RPE carrying mitochondrial DNA point mutations causing either moderate or severe mitochondrial dysfunction. Exploring these mutant RPE cells we found that, by itself, only the severe but not the moderate OXPHOS defect reduces phagocytosis. However, sub-toxic levels of lysosomal A2E are sufficient to reduce phagocytic activity of RPE with moderate OXPHOS defect and cause cell death of RPE with severe OXPHOS defect. Taken together, RPE cells rely on OXPHOS for phagocytosis when the carbon energy source is limited. Our results demonstrate that A2E accumulation exacerbates the effects of moderate mitochondrial dysfunction. They suggest that synergy of sub-toxic lysosomal and mitochondrial changes in RPE cells with age may cause RPE dysfunction that is known to contribute to human retinal diseases like age-related macular degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium.

Daily phagocytosis of spent photoreceptor outer segments is a critical maintenance function performed by the retinal pigment epithelium (RPE) to preserve vision. Aging RPE accumulates lipofuscin, which includes N-retinylidene-N-retinylethanolamine (A2E) as the major autofluorescent component. We studied the effect of physiological levels of A2E in RPE cultures on their ability to phagocytose ou...

متن کامل

Interaction of A2E with Model Membranes. Implications to the Pathogenesis of Age-related Macular Degeneration

Deposition of a fluorophoric material, known as lipofuscin, in retinal pigment epithelium cells has been speculated to be one of the biomarkers of age-related macular degeneration. One of the fluorophores of lipofuscin has been characterized as A2E, a pyridinium bisretinoid. Its cationic nature along with two hydrophobic retinal chains suggests that it can disrupt the membrane integrity by its ...

متن کامل

Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis

Age-related macular degeneration (ARMD) is the leading cause of vision loss in developed countries. Hallmarks of the disease are well known; indeed, this pathology is characterized by lipofuscin accumulation, is principally composed of lipid-containing residues of lysosomal digestion. The N-retinyl-N-retinylidene ethanolamine (A2E) retinoid which is thought to be a cytotoxic component for RPE i...

متن کامل

Neurotrophins induce neuroprotective signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti-apoptotic neuroprotectin D1.

The integrity of retinal pigment epithelial cells is critical for photoreceptor cell survival and vision. The essential omega-3 fatty acid, docosahexaenoic acid, attains its highest concentration in the human body in photoreceptors. Docosahexaenoic acid is the essential precursor of neuroprotectin D1 (NPD1). NPD1 acts against apoptosis mediated by A2E, a byproduct of phototransduction that beco...

متن کامل

A2E-associated cell death and inflammation in retinal pigmented epithelial cells from human induced pluripotent stem cells

Accumulation of lipofuscin in the retinal pigmented epithelium (RPE) is observed in retinal degenerative diseases including Stargardt disease and age-related macular degeneration. Bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E) is a major component of lipofuscin. A2E has been implicated in RPE atrophy and retinal inflammation; however, mice with A2E accumulation display only a mild ret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 36  شماره 

صفحات  -

تاریخ انتشار 2008